where
Extensions to the model, allowing
Of particular interest to the authors is an estimate of 'persistence' of the disease state. This is defined as spending j time units in the disease state, counting single disease free (negative) observations surrounded by positive observations as time spent in the disease. The probability of persistence is just a function of the transition probabilities
The authors claim that their discrete time model doesn't not require a "guarantee time" unlike Kang and Lagakos. This is obviously ridiculous, the discrete time model requires a guarantee time of 1 time unit for all transitions! While adopting a discrete time model simplifies the problem of inference to something quite trivial, one has to question how realistic it is to model something that is clearly a continuous time process as discrete time. Bachetti et al's more general approach is along similar lines. Similarly, while the estimation is nominally non-parametric, the discrete time assumption is in many respects more severe than, say, constraining sojourn distributions to be Weibull distributed.
The clinical definition of persistence which makes the assumption that a negative observation between two positive observations counts as a positive is easily accommodated for via the discrete time model. However, a more satisfactory approach would be to adopt a more formal definition, based in continuous time, e.g. persistence if disease free period is less than say 6 months. This would have parallels with the approach taken by Mandel (2010) in defining a hitting time in terms of having a sojourn of more than some length in the disease state. Farewell and Su also dealt with a similar problem but their approach seems to be best avoided.
No comments:
Post a Comment