Multi-state models have wide application particularly in event history analysis. This blog gives brief descriptions and reviews of new papers in the field.
Tuesday, 29 June 2010
Hidden Markov models with arbitrary state dwell-time distributions
Langrock and Zucchini have a new paper in Computational Statistics and Data Analysis. This develops models methodology for fitting discrete-time hidden semi-Markov models. They demonstrate that hidden semi-Markov models can be approximated through hidden Markov models with aggregate blocks of states. Dwell-time in a particular state is made up of a series of latent states. An individual enters a state in latent state 1. After k steps in a state where k < m , a subject either leaves the state with probability c(k) or progresses to the next latent state with probability 1-c(k). c(k) therefore represents the hazard rate of the dwell time distribution. If time m in the state is reached then the subject may either stay in latent state m with some probability c(m) or else leave the state. Hence the tail of the dwell-time distribution is constrained to be geometric. By choosing m sufficiently large a good approximation to the desired distribution can be found.
No comments:
Post a Comment